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Non-parallel effects in the instability of 
Long’s vortex 

By M. R. F0STER-f AND DAVID JACQMINS 
Ohio Aerospace Institute, Brook Park, OH 44142, USA 

(Received 10 December 1991 and in revised form 14 April 1992) 

As shown in Foster & Smith (1989), at large flow force M ,  Long’s self-similar vortex 
is in the form of a swirling ring-jet, whose axial velocity profile is of sech2 form. A t  
azimuthal wavenumber n of comparable order to the axial wavenumber, linear 
helical modes of instability are essentially those of the Bickley jet varicose and 
sinuous modes. However, at  small axial wavenumbers, the three-dimensionality of 
the vortex is important, and the instabilities depend heavily on the effects of the 
swirl. We explore here the effects of finite Reynolds number Re on these long-wave 
inertial modes. It is shown that, because the radial velocity scales with Re-lM, the 
non-parallelism of the flow is more important than the viscous terms in determining 
the finite-Re behaviour. The three-layer structure of the parallel-flow instability 
modes remains, but with a critical layer considerably modified by radial velocity. In 
investigating the critical range Re = O ( W ) ,  we find the following : for n > 1, the non- 
parallelism stabilizes the unstable inertial modes, leading to determination of neutral 
curves; for n < - 1,  the non-parallel effects always destabilize the vortex to these 
helical modes. Determination of the unstable modes and neutral curves for the 
n > 1 case requires a computational scheme that accounts for the presence of 
viscosity. It turns out that the n > 1 (n < - 1) modes are prograde (retrograde) with 
respect to the rotation of the main vortex. 

1. Introduction 
In the past twenty years, a number of new results have been obtained for the 

stability of three-dimensional vortices, that is, for concentrated vortices which have 
significant axial velocity shear. Building on the foundation of the works of Howard 
& Gupta (1962) and Drazin & Howard (1966), a series of papers by Lessen and 
colleagues (Lessen, Desphande & Hadji-Ohanes 1973; Lessen & Singh 1973; Lessen, 
Singh & Paillet 1974) appeared dealing for the most part with helical instabilities of 
the Batchelor vortex; Duck & Foster (1980) continued that effort. The particular 
vortex solution found by Long (1961), which has some geophysical significance (see 
Burggraf & Foster 1977), and has unstable helical modes not too different from the 
Batchelor vortex, has been studied by Foster & Duck (1982) and recently by Foster 
& Smith (1989). 

The concern of this paper is to show that asymptotic results obtained by Foster & 
Smith for inviscid instability modes of the Type-I1 Long’s vortex may be extended 
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to account for effects of finite Reynolds number. Foster & Smith’s asymptotic 
approach is applicable provided that both the vortex’s Reynolds number and its flow 
force M (to be defined later) are large. 

For large flow force, axial motion in the Type-I1 Long’s vortex is confined to a 
thin ring-jet of large radius, O(M),  from the vortex axis (Foster & Smith 1989). 
Across this the swirl climbs rapidly from zero to a potential-vortex structure. A weak 
downflow occurs over the large central core. Instability modes are concentrated in 
the ring-jet region. 

The inviscid modes for this vortex are centrifugal since they involve a radial- 
pressure-gradientlcentrifugal-force imbalance ; further, the absolute axial momen- 
tum and angular momentum of a base vortex plus linear disturbance are both fixed 
for fluid particles carried along with the disturbance. In addition, the growth rates 
are small, so that the eigenfunctions are close to the neutral mode whose 
eigenfunction is packed tightly about the critical layer, which occurs where 

kW’+nG = O .  

Here, the axial and azimuthal wavenumbers of the disturbance are k ,  n respectively; 
W ,  G are the axial velocity and angular momentum respectively in the vortex. Since 
C is monotone and W’ may be either positive or negative, modes for both negative 
and positive values of n can occur. Hence, there are unstable eigenfunctions for 
n > 0 and n < 0 - though perhaps quite different. (Contrast, for example, the 
Batchelor vortex for which both W and G are monotone, and hence inertial modes 
occur only for n < 0.) Here, neutral disturbances undergo a bifurcation to unstable 
modes a t  a particular value of k .  Since this critical layer occurs at  large distance, 
O(M),  from the vortex axis, such instabilities are ‘ring modes’. Such ring modes have 
been seen extensively in the recent works, particularly on the Batchelor vortex, 
utilizing high-wavenumber asymptotics. That work, begun by Leibovich & 
Stewartson (1983), and continued by them and others (Stewartson & Brown 1985; 
Stewartson & Capell 1985; Duck 1986; Stewartson & Leibovich 1987) showed similar 
concentration of the eigenfunction about a finite radial location, but for a different 
reason - because, there, n is large, and not M .  The question of the inter-relationship 
of the large-n and large-M limits for Long’s vortex is an interesting one, but not 
explored here. Long’s vortex has the property that the scale of the radial velocity in 
the vortex is O(Re-’) smaller than the axial velocity component. It is precisely 
O(MRe-’) for large M ,  so that effects of finite viscosity come into the stability 
problem through the radial velocity before such an effect arises from friction terms 
explicitly. (The Reynolds number here is defined by Re = r/v, where r i s  the vortex 
circulation at its edge and v is the fluid’s kinematic viscosity.) This non-parallel flow 
exerts a damping influence for Re = O ( W ) ,  smoothing the bifurcation, and in the case 
of n > 1 modes makes i t  possible to determine the neutral curve for this vortex. For 
n < - 1 modes, the effect of the radial velocity is to further destabilize the vortex; 
presumably the critical Reynolds number is o ( W )  for n < 0. 

Since for Re = O ( W )  the modes computed in this paper are essentially inertial, the 
comments by Lin (1955) are relevant, and for every unstable, non-parallel mode 
computed, there is an adjoint mode (not necessarily a simple conjugate in this case). 
Computing growth-rate curves, then, requires special care for damped modes. 

The plan of this paper is as follows. In  52, we review the basic vortex solution given 
by Long (1961), the special large-1M case. In $3, we modify the formulation of the 
large-wavenumber inertial modes for this large-M vortex to include effects of finite, 
but large, Reynolds number. The two-point boundary-value problem that arises 
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when including the dominant finite-Re term (non-parallelism) cannot be solved by 
hand. Therefore, in $4, we obtain the numerical solution. Discussion of the difficulty 
of continuing the (n > 1 )  solutions to damped cases is provided. In the Appendix, we 
show that sufficiently close to the point of bifurcation the viscous term is essential 
in obtaining the (unstable or stable) solutions. We expect that there is considerable 
generality to the analysis done here for a particular vortex. The instability modes 
studied propagate along and around the parent vortex in the same direction as the 
main rotation for n > 1 - ‘prograde’ modes - and opposite to the direction of the 
main rotation for n < - 1 cases - ‘retrograde’ modes. So, from our analysis in this 
paper, the non-parallelism tends to stabilize (destabilize) the prograde (retrograde) 
modes. The large-M requirement of this work means simply that the vortex is 
dominated by its axial motion - the swirl is relatively less important. We are 
confident that very similar instability structures and their modification by non- 
parallelism will be in evidence for any parent vortex whose flux of axial momentum 
is large compared to its flux of angular momentum. In the setting of a geophysical 
vortex, for example, where the azimuthal wind speeds are relatively smaller than the 
vertical velocities, we expect that non-parallelism would make (unstable) retrograde 
modes much more likely to be observed. 

2. The vortex flow 
The vortex under study is due to Long (1961). Long found a similarity solution of 

the Navier-Stokes equations in which vortex velocities are given in terms of two 
functions f (y) and g(y) : 

Here {U,, V,, W,} are the vortex radial, azimuthal, and axial velocities in a cylindrical 
polar coordinate {r,, 8, z,} system. Tis  the circulation of the vortex, and Y is the fluid 
viscosity. The similarity variable y is equal to Tr,/2 2/27cvzd. The subscript d is used 
to  denote dimensional variables. 

The differential equations obeyed by f and g are, to 0 ( v / q 2 ,  

yf”-(1-f)f’-4y3s = 0, yg”-(l-f)g’ = 0, 2y3s’+g2 = 0, (2.2a-c) 

where s is a pressure perturbation. Boundary conditions (see Long 1961) are 

f(0) = f ’ ( O )  = g(0) = 0, f’(CO) = g(o0) = 1. (2.3a, b) 

Solutions can be characterized in terms of their ‘flow force’, whose non-dimensional 
form is 

Long and Burggraf & Foster (1977) found that solutions to (2.2)-(2.3) exist only for 
M larger than 3.75. There are then two solutions, denoted by Foster & Duck (1982) 
as Type I and Type I1 vortices. This paper considers instabilities of the Type I1 
vortex at large values of M .  Foster & Smith have shown that this vortex then has a 
relatively simple structure. At large M ,  the vortex is concentrated in a ring at  
y = yfl = 3 2/2M/n. We introduce the small parameter E = l/yfl. Away from the ring 

(2.5) f = E - ~ F ~ ( Y )  + qE), 9 = G J Y )  + o(q,  s = E 2 # o ( ~  + 0 ( € 4 ) .  



292 

Here Y = ey = y/yo. Fo, Go, and So are given by 
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F0=-P/2 /2 ,  G o = O ,  S O = $ ,  Y < 1 ;  ( 2 . 6 ~ )  

Po = (P-i);, Go = 1 ,  So = 1/ (4P) ,  Y > 1. (2 .6b)  

Near y = yo we set y = e-l+ 6. The inner asymptotic expansion for the ring vortex 
then takes the form 

f =  e-lF0(E)+F1(E)+ ... ) g = 30(t)+€31(()+ ..., s =g+ .... (2.7) 

As shown in Foster & Smith, the ( )o terms are given by 

Fo = tanh (i) /2/2,  go = t( 1 + tanh ([)I, (2 .8)  

where E = 8(1+[/2/2). The equation for Fl is 

FY+(FOF1)’ = -&q+F;+l, (2.9) 

from which Fl = $$‘sech2(i)+2/2Ctanh([). (2.10) 

Fl is needed in order to match properly the radial velocity u d .  From (2 . la) ,  Ud is 
given in the intense-jet region by 

(2.114 

uoo = s;(C), u,, = gF;-%o+F;. (2.11 b )  

Toward infinity 9; vanishes strongly and the O(1) terms -Fo++i become 
dominant. It is these terms which match t o  the 0(1) terms of the outer expansion of 

3. Instabilities 
A t  moderate and short wavelengths, instabilities of the large-M Type-I1 Long’s 

vortex are essentially the varicose and sinuous modes of the Bickley jet. Thus, these 
instabilities, both viscous and inviscid, are determined mostly by the vortex’s sech2 
axial velocity. For long waves, however, the effect of the swirl velocity grows and the 
instability structures of both mode branches change significantly. In this paper, we 
deal with the viscous modifications to the inviscid long-wave modes discussed by 
Foster & Smith (1989). 

The following analysis will deal with two distinct long-wave regimes. When the 
axial wavenumber k is O(e)  the three-dimensional character of the basic flow is 
important only in the regions outside the concentrated vortex ring. The critical-layer 
location, which is in the ring, is determined exclusively by the axial motion. As k 
drops to O(2) ,  three-dimensional effects extend into the vortex ring and the critical- 
layer location is then also affected by swirl. 

The linearized instability equations are non-dimensionalized by setting rd = zo 6r 
and zd = zo + zo Sz and scaling time by z t  S3/2/2v, velocities by 1/2v/zo 6’, and pressure 
by 2v2/2;P.  6, an inverse Reynolds number, equals 22/2nv/r. In terms of the 
scaled coordinates y = r / (  1 + Sz). 

A difficulty posed by the viscous Long’s vortex is that it is non-parallel. To deal 
with that rationally, we suppose that the instability is of the form A ( r ,  8, z )  eikz where 
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FIGURE 1. Regions of the asymptotic expansion : region 11* is the ring-vortex region ; 
I11 is the critical layer. 

A is a slowly varying function of z. The region in z under consideration is of length 
O(l/k). We constrain 6 to be small enough so that (i) 6z is -4 1 and (ii) changes in the 
z-direction over the length O(l /k)  of A and of the basic-state flow are small. The 
second constraint turns out to be the significant one. We assume that the rate of 
change in the z-direction of the basic state and of A are of the same order. From the 
definition of y, the r- and z-derivatives of a basic-state quantity L are 

= (y/r) U / d y  and i3Lla.z = - (Sy/( 1 + 62)) U/dy.  

A Taylor series in z of L can thus be written as 

L(r, z )  = L(r, 0) - Srz aL/arlz-o + O(6rz)'. (3.1) 

The Long's vortex vanes smoothly enough so that r-derivatives of its basic state are 
of the same order of magnitude as the basic state itself. The z-dependent terms in 
(3.1) can thus be neglected provided that 6rz -4 1. Since 6z is small, r x y, and the 
region of interest in r ,  at the vortex ring, is at r = O ( C ~ ) .  6rz is therefore O(S/sk). 
Setting 6 = O ( P ) ,  m must therefore be > 3 for k = O ( 2 )  and > 2 for k = O(s).  In  the 
subsequent analysis Swill be set to O(s4) for the first case and to O(s3)  for the second. 

With the above constraints, the scaled, linearized equations for the perturbation 
quantities {u(r, z ) ,  g(r,  z ) ,  w(r, z ) , p ( r ,  ~ ) } e ~ ~ ~ e ~ ~ ( ~ - ~ ~ )  about the location z = 0 are 

laru in 
-- +-v+ikw = R,, 
r ar r 

au au V 
ar ar r 

i@u+U-+-(u-&w)-2-v = 

i@v + U-+ - (u - 6rw) +--v +- u = 
av av u v  2in v)+R,, ( 3 . 2 ~ )  
ar ar r r  

aw aw 6 
ar ar d 2  

i@w+ U-+-  (u -6rw) = -ikp+-V2w + R,, 

( 3 . 2 ~ )  

(3.2d) 
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where 
a2 1 a n2 n v2=-+------k2 and @ =  kW+-V-kc. 
ar2 r a r  r2 r 

The R in each equation is a remainder term that includes (i) Taylor series terms of 
basic-state flow quantities and (ii) z-derivatives of u, v, and w. For the chosen 6 these 
terms are of order E relative to the leading-order terms. The non-dimensionalized 
base-state velocities a t  z = 0 are 

In  the vortex ring Wand its r-derivative are 0(1), V and its derivative are O ( E ) ,  and 
U and its derivative are O(S/s ) .  

In  the following, we determine approximate long-wave solutions to (3.2) using the 
technique of matched asymptotic expansions. The solutions have three distinct 
regions (see figure 1) ; an outer potential flow region (region I*), the inner ring-vortex 
region (region II*), and a critical layer (region 111). 

3.1. Instabilities for k = O(2)  
In  this section, we consider the case k = O ( 2 )  = E". 6 is chosen to be O($).  Setting 
r = Y/E and utilizing the solutions (2.6) in region I where Y = 0(1), we obtain outer 
solutions valid to leading order in E ,  

p- = eq-Y'"I, u- = -iq-lnlylnl-l/Pco, Y < 1 ; (3.4) 

p+ = sq+(n/P-Pc,) Y-l"l, u+ = -iq+InlY-l"l-', Y > 1. (3.5) 

These solutions are derived in detail in Foster & Smith (1989). c, is the leading term 
in an asymptotic expansion in E for the wave speed c. We restrict our discussion to 
instabilities for which n =I= & 1; the In1 = 1 solutions seem to have a different, 
specialized structure. 

Quantities q+ and q- in (3.4)-(3.5) must be related by analysing the jet-like zone I1 
and the critical-layer zone 111. In  region 11, (3.4) and (3.5) are no longer the correct 
solutions to (3.2) because in this zone, the jet-like zone of the vortex, the velocity 
profiles are given by (2.7) instead of (2.6). Thus, we set r = yo+[. The dependent 
variables are resealed as p = @i, u = d, v = c'V" and w = P G .  Th_e scalings for p and 
u are determined by the outer solution. Finally, we set @ = c2@. Substitution into 
(3.2) together with k = e2/3 yields the leading-order equations: 

dd, 
-+in5,+iipG0 = 0, -- d'o 2G,V"=O, 
d6 d5 

(3.6a, b )  

i6 ,5 ,+G~d0 = 0, i8,G0+W0d, = 0, 8, = P(W,-c,)+nG,. (3.6~-e) 

The primes inqicate derivatives with respect to r .  W, = sech2 (i)/4 4 2  and 
Go = i( 1 + tanh ( 6 ) )  are the O( 1)-accurate approximations to W and to the base-state 
angular momentum G = rV in the vortex ring._ 

The solution of (3.6) gives do = constant x a,, so, in a notation consistent with 
Foster & Smith (1989), we have 

A* - 
7 (3.7a, b)  p;  = n*+iA* 

0 i G 3 P >  "+ 
u0 =?@, 

where the f notation refers to solutions in regions 11+ and 11-. The A ,  and l7 
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quantities are constants. Matching (3.7) to (3.4)-(3.5) leads to solutions in region I1 
in terms of only q- and q+, 

(3.8b) 

The region-I1 asymptotic expansion whose leading solutions are given by (3.9 fails 
at  the critical layer, which, as discussed in Foster & Smith, occurs where both CD0 and 
3, vanish. Let the location of the critical layer be denoted by 5,. The location E, is 
the solution of the equation 

and the wave speed, from (3.6e) is then 

tanh (5J2:+4) = d2n//3, (3.94 

(3.9b) 

Hence, it is evident that the structure examined here requires that /3 2 2/21nl, which 
we take to be so throughout the subsequent analysis. 

Introducing p = (E-  [,)I& and expanding c as co + €c l  + . . . , @ becomes locally 
d(;ge2-pc1)+O(e3). Also we set u = &,+ ..., p = epC+ ..., w = ~ f , +  ..., and 
w = e7wc+ ... . Further, set U(&) = (a/€) U, = ( S / B )  Uoo(&)+ ... . Substituting these 
into (3.2), we find from (3.2b) that p, is a constant. Equations (3 .2~)  and (3.2d) can 
be combined into a single equation for u, forced by pc, 

Evaluation of 3; and Uc then leads to the equation 

6 a- a+ d2$ d$ 
e4 4 dp2 dP 

i[pcl+ Yp2]-++iYp$ = 0, 

(3.10) 

(3.11) 

where a* = 1 k d2n/B, = P (a- a+)2, (3.12) 

and we have used the transformation 

(3.13) 
Equation (3.11) is to be solved subject to the conditions 

$NP2,  p + - a ,  
$NAP2, p + + m ,  

where the quantity A is given by 

A =  
sz pa: a: 

+Pa4 - 3214 + 8lnlat 

(3 .14~)  

(3.14 b) 

(3 .14~)  

u, and $ must behave quadratically for large p in order to match to (3.8). 
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The foregoing analysis neglects the additional non-parallel remainder terms in 
(3.2). The presence of z in these terms complicates, but does not make impossible, a 
Fourier transform analysis. After transformation, (3.2) then becomes a set of partial 
differential equations in the independent variables r and p (or k). The dominant term 
added to (3.2) takes the form 

[ 3 s a  
€2 ap 7-- (nG+/3)- .  (3.15) 

Careful examination of this term and others in (3.2) shows that in the critical layer 
the ratio of (3.15) to the leading terms of (3.2) is O(B/$). However, the radial velocity 
term (the second term in (3.9)) is O(6/e4). Hence, we conclude that the remainder 
terms in (3.2) are negligible provided that /3 9 4. 

3.2. Instabilities for k = O(C) 
For this case, we choose 8 = O(e3) and set k = €a. The region-I solutions, as shown by 
Foster & Smith (1989), are then 

( 3 . 1 6 ~ )  

p+ = qK,,l(aY), u+ = QK;&Y). (3.16b) 

The quantity co is, as before, the first term in an asymptotic series for c ;  q is an 
as-yet-unknown constant. Ilnl and Klnl are modified Bessel functions of order In(. 

The analysis in region I1 proceeds much as in the former case, the chief difference 
being that the importance of the swirl is much less. We set p = r?;, u = a, v = v”, End 
w = c-%. @ is set to €6, with = a( W, - c,) .  c is expanded as c,  + ckl + . . . and @ as 
8.,+&6.,+0(s). From (3.2b), fi0 is constant and from (3.2a, d )  C$ = (A$/a) Go. Then 
8, = - ac,. Substitution of u = Go + e%Zl + . . . into (3.2) gives 

a, = @$/a) g1 = -A$ c,. 

ic, 

(3.17) 

= 0 is equivalent to 
Wo = 0, which, from W, = as;ch2 (5) 4 2 ,  occurs at  f; = g( l  +f ; /42)  = 0. Thus 
6, = - 4 2 .  Setting f; = - 2/2 + @p, @ in the critical-layer region is 

As before, region I11 is located ?bout = d; = 0; 

a 
32 4 2  

(3.18) 

We set u = du, while keeping the region I1 scalings for the other variables. 
Substitution into (3.2c, d )  yields 

d2u, du, 
,u7+i@,--i@~u, = -(n2+a2)pc. 

dP dP 
(3.19) 

Here, p = - 4 2 U ,  S/e3 = 6/(4s3). The critical-layer pressure is, as before, a constant. 
A similar substitution to that of (3.13) then alters (3.19) and associated matching 
conditions into 

---i[aC,+pl]%!+ia,’~ 6 d2$ = 0, 
4e3 dp2 3 2 4 2  dp 1 6 4 2  

(3.20) 

(3.20 b) 
(3.20 c )  
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where 

For a+O, asymptotic formulae for the Bessel functions give 

(3.20d) 

(3.21) 

This agrees with (3.14~)  for /3 large. Note, further, that (3 .20~)  for a+O goes over to 
(3.11) for /?+a. 

The coefficients of (3 .20~)  are fully contained in the coefficients of (3.11), so the 
same equation may be solved in both k regimes. Further, a composite formula for A 
may be constructed by putting together the formula (3.14~)  with (3.20d). The 
resulting equation is 

(3.22) 

4. Results 
4.1. General solution behaviour 

It is possible to rescale p so that (3.11) is transformed to an equation with only one 
parameter. Setting p = [(a- a+/4!P) (6/e4)]f$, (3.1 1) becomes 

where P = /?cl(6a- r+/(4e4))-i Y-i. A similar equation would also replace (3.20). 
The fundamental solutions a t  large 6 are then, approximately, s1 = P+b2 and 
s2 = exp [i(Pb+$33)]/b4. The second, depending on the sign of the imaginary part of 
P, is either exponentially decaying or growing as b goes to + 00. 

The exponential behaviour of the second solution has significant consequences. 
The boundary-value problem (3.1 1)-(3.14), (3.20) requires solutions that are 
dominated by the first fundamental solution at  both plus and minus infinity. If 
Im (P) > 0 the second fundamental solution decays a t  + co and solutions can be found 
by starting at - 00 with s1 and integrating to + 00. At + 00 both s1 and s2 will be 
present but s1 will automatically be dominant. Similarly, if Im (P)  < 0 the second 
fundamental solution grows at  + co and solutions can be found by starting a t  + 00 

with the first fundamental solution and integrating backwards. A major problem 
thus appears to arise in that solutions of (3.11)-(3.14), (3.20) are discontinuous from 
one sign of Im (P) to the other. Associated with this is the more minor puzzle of the 
non-uniqueness of the neutral modes. Then, since P is real and s2 decays algebraically 
at both plus and minus infinity, both integration directions yield solutions. 

These problems can be resolved by appealing to the fully viscous theory. We show 
in the Appendix that for relatively small values of 6/e4, the viscous term must be 
formally included to obtain solutions in the neighbourhood of Im (cl) = 0. In  the 
context of the discussion of this section of the paper, the effect of the viscous forces 
is to damp the s2 solution of (4.1) for p -+ + 00 ; the damping occurs independent of the 
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sign of Im (P) and for any non-zero viscosity. A heuristic way to see this is to include 
viscous terms in the critical-layer analysis of $3. These terms add 

-(V& ( 1 / d 2 )  (d34/dP3) 

to equation (3.11). Though of higher order than the other terms, it becomes 
important at large p as s2 becomes increasingly oscillatory. Writing the exponential 
part of s2 as exp [ ~ ( p )  p ] ,  K shifts in phase from near $n for p of O( 1) to in as p + f 00. 

In  other words, s2 moves from being oscillatory to being strongly damped. 
The above argument resolves the proper direction of integration and thus the 

relevant solution type. With viscosity, s2 grows rapidly as p + - 00. This eliminates 
from consideration solutions of (3.1 1) gained by integrating from + 00. The above 
also points to a practical way to continue the solutions into parametric regions that 
have damped modes. Instead of integrating along the real line, we introduce a 
pseudo-viscosity by keeping slightly above it. This damps out the s2 component of 
the solution and leaves the required s1 component unchanged. 

It turns out that the two solution types, the first found by integrating from - 00 

and the second found by integrating from + 00, are related in a way that generalizes 
the conjugate mode pairs of inviscid parallel-flow theory. The first case gives the 
continuation of the unstable inviscid parallel-flow modes, while the second gives the 
continuation of the unphysical damped modes. Given a solution 4 of (3.11)-(3.14), 
(3.20) then its conjugate $* satisfies 

d4* 
db2 dP 

-+i(P*+b2)----;--2ib4* = 0, 
d24 * 

(b*-p, #6+-0O, 

I$* - A*b2, ,3++00. 

The substitution b+-b and the resealing $* = A*$ then gives 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

(4.34 

(4.3b) 

(4.3c) 

6 therefore satisfies the original equation (4.1) except with P *  instead of P .  Thus, 
solutions of the second type (the damped modes with Im(P)  < 0) can be found 
directly from those of the first type (the unstable modes with I m ( P )  > 0) as their 
rescaled, flipped (about = 0) ,  conjugates. 

4.2. Numerical methods 

Numerical work was done using the scaled equation (4.1). The chief difficulty in 
solving it is the highly oscillatory nature of its second fundamental solution. Two 
methods have been used that overcome this problem. The first is the standard fourth- 
order Runge-Kutta technique but with adaptive gridding. Integration step sizes 
were made 0(1/b2) so as to keep numerical stability. The second is the 
Crank-Nicholson method, which is implicit and always stable, using fixed steps. 
Both were found to be adequate and gave little trouble. Results presented herein 
have been checked by calculating them using both methods. Another difficulty was 
starting the numerical integrations off. It was found that simply setting q5 = b2 at a 
large but still economical value of -6 was insufficiently accurate. This resulted in the 
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presence of a significantly large multiple of the unwanted second fundamental 
solution, as was observed in the numerical solution’s oscillatory behaviour. 
Fortunately, a more accurate beginning solution, valid for large -6, can be derived 
asympto$ically from (3.11). 

To O(P-”), it is 

where y = 6a- cr+ @/4e4(/3cl)f, $ = $6, and f (3) = $7[: + tan-’”. The result in (4.4) and 
its derivative were used to start off the numerical solution. With this, it was found 
easy to keep the unwanted oscillatory second fundamental solution down to a very 
low level, about 

No particular difficulty was experienced in numerically determining A .  Inte- 
grations were simply continued until the oscillations of the +00 fundamental 
solution died out to a preset small level. A was then approximated by dividing the 
numerical solution by P+p2 and averaging the result over the last few tens of 
integration steps. 

that of the wanted startup level. 

4.3. Neutral modes and some general results for stability and instability 
One way of solving (4.1) is by setting the physical parameters (n ,p ,&,e ) ,  of the 
problem, thus determining A ,  and then solving (4.1) for various P (and thus cl) until 
the P is found that yields $( + co) = A$2. An alternative approach is to integrate (4.1) 
for a set of discrete P, thus finding A(P)  over some range of P. A(P) ,  assuming care 
in accounting for possible multivaluedness, can then be inverted to find P(A) .  From 
that, with further algebra, cl(n,  p, 6,e) can be determined. The second approach offers 
the possibility of needing many fewer integrations of (4.1) than the first. 

The second approach is definitely the most efficient when searching for neutral 
modes. P is then on the real line and A generated by P is limited to curves in the 
complex plane. These curves are shown in figure 2 for - 8 < P < 9. (At these points, 
the IPI = co limits have essentially been attained.) For P-++co, the P(A)-curve 
smoothly approaches ( 1 , O )  on a tangent to the line A = 1. For P - t -  00, P ( A )  is on 
an infinite set of diminishing ‘circles’ that, again, reduce to + 1 in their limit. P ( A )  
is multivalued in this region, for A, 2 1.  Everywhere else, computations indicate that 
P ( A )  is single-valued, with A inside the neutral curve indicating instability. 

It turns out that only a small portion of these curves, in fact only (a)  the section 
in A,  < 1, A, 2 0 and ( b )  the single point A = ( l , O ) ,  is actually relevant to this 
stability problem. Also, the multivalued region is unimportant. This is because of 
restrictions on A imposed by its formulae ( 3 . 1 4 ~ )  and (3.22). These restrictions also 
lead to some reasonably general results about parameter ranges of instability and 
stability. 

We now look at  these restrictions. Equation (3 .14~)  can be written as 

1+t52,i 
l + b Q , i ’  

A =  (4.5) 

where t = pa? vt/(p”d- - 3214 + 81nla:) and b = /?of at/(8lnla: -pat). t and b are 
functions of n and p, while 52, is a function of only 6/e4. 52, can vary from 0 to + 00. 
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FIGURE 2. Neutral A-curves ( A  associated with neutral modes). A(PJ is shown for -8 < P, < 9. 
The cross-hatching shows the A permitted by (3 .14~)  for n > 1. 

Meanwhile, for a fixed n and p, the path of A describes a semicircle with diameter 
Il- t /b( in the complex plane, 

(A,. - ;( 1 + t/b))' +A;  = a( 1 - t/b)', (4.6) 
where A, varies from 1 to t / b  and sgn (Ai) = sgn ( t -  b) .  It turns out to be fairly easy 
to establish bounds on the ratio b/t .  These bounds then yield general bounds on the 
location and radii of the A semicircles, and thus on A .  

We first consider n < - 1. For this case it can be shown that Jbl is greater than or 
equal to It1 and thus )A1 < 1. Solutions intersect the neutral curves only in the inviscid 
limit as P goes to + 00. As a result, all 6 > 0,  n < - 1 solutions are unstable. 

For n > 1, it  can be shown that It1 > (bl and that therefore IAl 2 1. There are two 
subcases. The two are separated by the value of p, p = p*, for which t is singular (its 
denominator is zero) and A becomes infinite. For p < p*, t is < 0 and for /3 > p*, 
t is 2 0; b is always ,< 0. 

For /3 < p*, A,. 2 1 while Ai is bounded by 

-00 < ~i < - [ ( ~ r - l )  ( ( t / b ) m i n - ~ r ) l ' -  (4.7) 
The range of A for this case is shown in figure 2 by the cross-hatching in the fourth 
quadrant. For n = 2, (t /b)min = 4.64. For n = 3 the minimum t / b  is 7.93, for = 4 the 
minimum is 11.35. It can be seen that the range of A lies outside the neutral curves. 
Thus, all S > 0, n > 1, /3 < /3* modes are damped. 

The range of A for p > /3* is shown in figure 2 by the cross-hatching in the second 
quadrant. The result can be stated as A,. < 1 with lAl 2 1. This region includes part 
of the Ar < 1 neutral curve. Only n > 1, @ > p* gives neutral modes. Such neutral 
modes are found starting a t  A x (1,4.474), P M - 1.421, for p = /3*, and progressing 
to A = ( -2 ,0) ,  P = 0, with p such that t / b  = -2. A rather surprising result is that 
the range of neutral A ,  P is independent of n > 1.  
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FIGURE 3. Neutral curves for n = 2, 3, 4, and 5. The curves are calculated using (3 .14~) .  
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FIGURE 4. Neutral curves calculated from (3.22) for n = 3, for E + O  and E = 0.2, and 0.4. 
The E + O  case is equivalent to a+O and recovers (3 .14~) .  
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None of the above results are changed in a significant way for the more complete 
A equation (3 .22) .  Most important, the range of relevant neutral A ,  and the P 
associated with that A range, remains the same. Equation (3.22) can be written 

1 +FK tf2,i 
1 +FI b52, i ’ A =  (4 .8)  

FK and FI obey the inequalities FK, FI > 0 and FK > Fr. The second inequality leads 
to the result that for n > 1 the bounds on A are the same for (3.22) as for ( 3 . 1 4 ~ ) .  
Bounds on A for n < - 1 are changed in only minor ways. In  particular, this case still 
has only unstable modes. 

Figures 3 and 4 show positive-n neutral curves in the (Re, /3) plane. (For fixed 8, the 
Reynolds number is proportional to e4/8.) Figure 3 shows neutral curves for n = 2 ,  
. . ., 5 for 6 = 0(c4). This uses ( 3 . 1 4 ~ )  calculating A .  Figure 4 shows results using (3 .22) .  
Results are shown for various e for n = 3.  It was originally hoped that the Ic = €a 
approximation would yield an upper branch for the neutral curve. However, as the 
figure shows and the previous analysis in this section indicates, even very large CL and 
6 affect the neutral curves only slightly. 
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pi342 
FIGURE 5 .  for n = - 3 ,  for S/e4 = 0,  5, 20, 100, and 400. /3* is located at the break in the 
6/e4 = 0 curve. The 8-axis is scaled by the minimum allowable value of /I, which is 3 d2 for 
n = 2 3 .  
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pi342 
FIGURE 0. el,, for n = 3,  for 6/s4 = 0, 20, 100, and 400. /3* is located at the break in the = 0 

curve. The 8-axis is scaled by the minimum allowable value of /3, which is 3 1 / 2  for n = 3. 

4.4. Growth rates 
Figures 5 and 6 show for, respectively, n = - 3  and 3, for various values of the 
viscous parameter 8/c4. The symbol cl, has been written for Im (cl). A is calculated 
using ( 3 . 1 4 ~ ) .  The plots show that cl,i is a monotone function of the viscous 
parameter. In  agreement with the analysis of the previous section, increasing 6/e4 is 
destabilizing for n .< - 1 and stabilizing for n > 1.  The singularity in cl, indicated in 
figure 0 is at p = p*. As mentioned in the previous section this value of /3 makes A 
infinite. I t  is also the value at  which the inviscid parallel-flow solution bifurcates 
from neutrality to instability. For n < - 1, p = p* makes the denominator of ( 3 . 1 4 ~ )  
singular, and thus makes A = 0. The asymptotics of both cases are discussed in detail 
in the next subsection. 

Another significant result visible in the plots is the relative unimportance of non- 
parallel effects as fl  becomes very large. All the viscous curves then asymptote 
toward the inviscid parallel-flow curve. This result can be shown to hold by 
considering (3.11) and ( 3 . 1 4 ~ ) .  As /3+ co, CT* +. 1 and, from inspection of (3.14c), 

A -  1+252/p. (4.9) 
Thus A approaches the inviscid parallel-flow value of 1 that is given by Q = O .  
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Meanwhile, (3.11) also simplifies to the inviscid case. Its zeroth- and first-derivative 
terms are multiplied by p-. co while its second derivative is multiplied by 6/e4, which 
is taken here to be fixed. The solution to (3.11) for large /3 is given by (4.4) to O ( P 3 )  
(remembering that y K pi). For small y ,  (4.4) is valid along the entire inte ration 
path. This solution is the inviscid parallel-flow solution plus a small ( O ( ~ E ) )  non- 
parallel modification. 

4.5. The solution for 6/e4 4 1 
The parallel-flow growth rate is given in Foster & Smith (1989), and corresponds to 
the solution of (3.11)-(3.14) for 6/e4 = 0. As it may be noted from (3 .14~)  above, the 
limit solution fails near singularities of A ,  denoted by p*, previously discussed in 
$4.3. Those locations are the bifurcation points for the parallel-flow solution. In their 
neighbourhood, the growth rates depart significantly from the parallel-flow growth 
rates for arbitrarily-small S/e4, as we shall see below. For 6/e4 = 0, the solution of 
(3.11)-(3.14) for c1 is? 

8 

Figure 5, for example, shows the parallel-flow result (S/e4 E 0) as well as the growth 
rate for, say, 6/e4 = 5. Note that those two curves lie very close together except in 
the region of bifurcation. Thus, the solution to (3.11)-(3.14) goes uniformly to the 
inviscid solution except near the neutral condition, /3 = p*; /3* = 9.1416 for n = -3. 

Now, careful inspection of (3 .14~)  shows that A + 1 +O(sZ) for 51+0 except in two 
situations, where the coefficients of SZ in the quotient for A are singular. 

First, consider the case when the coefficient of 51 in the denominator of (3 .14~)  
vanishes, namely, 

/3zat - 814 = 0. (4.11) 

Note, from (4.10), that a p value that corresponds to a solution of (4.11) is associated 
with a neutral mode for the inviscid problem. Solution of (4.11) gives 

p* = (-2n)t[2+(-n)t], n < 0 (4.12) 

(equation (4.11) has solutions only for n < 0). Near /3 = p*, c- has the form 

(4.13) 

(4.14) 

In the same region 

Y -+ Y* = ;( - n); (1 + ( - 4 9 2 / ( 2  + ( - 7 ~ 4 9 ~ .  (4.15) 

Setting p = p* + s, (4.16a) 

(4.16b) 

(4.16 c) 

t This replaces equation (5.32) of Foster & Smith (1989), in which there is an algebraic error. 
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(3.11)-(3.14) are rescaled to 
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(4.17) 

#* -p*2, p*+-m, (4.18) 

(4.19) 

Therefore, near p*, the complete viscous problem must be solved even if the 
Reynolds number 1/6 is large. Further, we see that within a region of width O(8/s4) 
near p*, the imaginary part of c, is O(8/s4)1. 

A very similar structure occurs also for n > 0 modes near where Im (c,) + O ;  it  
occurs where the SZ coefficient of the numerator of ( 3 . 1 4 ~ )  is singular, so 

(4.20) pa! - 321nl+ 8(nlu: = 0. 

Writing Z for 2/2n/P* and substituting into (4.20) leads to the cubic equation 

(n+4)Z3+3(4-n)Zz+3n.Z-n = 0, n > 0. (4.21) 

For n > 1, this cubic has one real positive root, hereafter denoted by Z,(n). For 
n = 3, for exarnple, Z, = 0.2874 and /3* = 14.76. As with the n < 0 case, we set 
/3= p*+(S/S)p.  Also, we put p = [8(6/s4)Z,/(l-Z",]fp*, and 

c1 = (6/$): [(z,(1 - Z $ ) ~ ) ~ / S  2/21 c:. (4.22) 

The equations for q5* then have the same form as for the n c 0 case. In fact, (4.17), 
(4.18) carry over unchanged and (4.19) is replaced by 

(4.23) 

Thus, we verify from the structure of the boundary-value problem for # that the non- 
parallel flow solution deviates substantially from the parallel-flow result near the 
bifurcation point, p*, even for 6/s4 < 1 ! We see from figures 5 and 6, however, that 
the departure from the 6/s4 = 0 growth rates is rather different in the two cases 
n >  1 a n d n < - 1 .  

One of us (M. R. F.) wishes to thank Ohio Aerospace Institute for support as a 
resident faculty member during part of the period over which this work was done. 

Appendix 
In  $4.5, we examined the solutions of (3.11)-(3.14) in detail near p = /?* for 

A 4 1, where we now define h as ale4.  In summary, we found for the n > 0 case that when 
p is within O(h)  of B*, region I11 shrinks by a factor Af, the growth rate Im is 
O(hg) and non-parallelism makes the solution significantly different from the h = 0 
case given by (4.10). We show below that, in fact, for h sufficiently small the viscous 
term dominates the non-parallel term; in that range, then, no proper h < 1 solution, 
stable or unstable, may be obtained without the viscous term. We have not yet been 
able to show, with a similar argument, the necessity of the viscous term for obtaining 
the solution for h not small. 

We notice, from (4.10) and n > 0, that for j3+/3*, cl+O, in fact 

pcl - ~(2,) (p-p*)ge2ni/3, (A 1) 
where the exact form of K does not matter at this point. 
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In the notation of (3.10), the exact parallel-flow solution to that equation (setting 
U, = 0) is easily shown to be 

where a is written for convenience for pcJY. Notice that as a (or /3cl)+0, the 
solution is singular, and also it seems reasonable to rescale p as well, so we write now 
p = A p  and a = Ad2, where it is understood that A is complex-valued. Then, this 
substitution into (A 2) shows that the dominant behaviour of u, for A + 0 is 

With these preliminaries, we now substitute the change in variable p into the 
partial differential equation (3. lo), including the third-derivative (viscous) term that 
is small for the analysis in $3 of the unstable modes. In  that case, (3.1 1) now becomes 

where the distinguished limit has been chosen as 

A = (hO/!P$. 

Equation (A 4) may be rewritten using a change of variable like (3.13) into the 
equation L(q5) = 0, with matching conditions like (3.14a, b ) ,  viz., 

q5-p, p+-m (A 6 4  

where do is a constant depending on 2, and /3 has been written as p* + h@P. So, for 
all h = O(e2) the viscous term is essential, and is needed to generate the proper 
solutions for Im (A)  < 0. 

We summarize as follows. We noted above, for small A ,  that for p-p* = O(h) ,  non- 
parallel corrections to (4.10) are important; here, we found that for P-p* = O(h@), 
the viscous term is dominant, and not non-parallelism. Since the first region of p non- 
uniformity occurs over a wider zone than the second for h < 2, we conclude that for 
h < e2, (A 4) is the appropriate equation to solve for u,, and viscous effects are critical 
to determination of stable or unstable eigenmodes. For A/e2 of order unity, (A 4) 
indicates that both viscous and non-parallel terms are required. For h % e2, non- 
parallelism becomes more important and the arguments of $4.5 are recovered. As 
noted in $4.1, it appears that the viscous term is essential for calculation of the 
proper inertial eigenmode for h = 0(1), though we have not been able to extend the 
argument given here, which is restricted to relatively small values of A. 
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